Learn blockchain by building the rules that make lying useless

If you work with crypto teams, vendors, or blockchain products, you do
not need more opinions, you need X-ray vision. This course gives you
that by walking you through the construction of a blockchain node from
scratch, with each layer explained in plain language and reinforced with
practical labs. Developers gain a buildable blueprint, managers gain the
ability to ask the right questions and spot bad designs, and integrators
gain a clean mental model for how blocks, transactions, wallets, and
explorers actually interact.

Most blockchain courses explain concepts and leave you guessing how
the pieces fit. This one forces the pieces to fit because you build them in
the only order that really works: data structures first, then validation and
state transitions, then mining and consensus, then networking, forks,
reorgs, syncing, and finally the user-facing tools (API, wallet, explorer).

You can follow the concept track with no coding, or take the builder track
and implement a real node that interoperates with other students’ nodes.
By the end, you will not just “know what a blockchain is”, you will know
exactly why each rule exists and what breaks when you remove it.

Who This Course is For

Teachers, trainers, and technical content creators

e You want a structured sequence with clean mental models, labs, and
test questions you can reuse.

Product managers, tech leads, engineering managers

e You need to make decisions, review designs, and challenge vague
claims.

e You want to understand tradeoffs (PoW vs PoS vs participation models)
without getting buried in math.

Founders and investors who want to evaluate blockchain projects

e You want to distinguish real engineering from marketing.
e You want a checklist for what a serious chain must implement to be
credible.

Integrators and solution architects

e You need to connect wallets, services, and infrastructure to a chain.
e You want to know what is safe to assume, what is never safe to
assume, and where failures happen.

Security engineers and auditors

e You want a concrete map of attack surfaces: replay, double spend
races, eclipse, DoS, fork games, and what defenses actually work.

Software developers (backend, full-stack, systems)

e You want real architecture, not just theory.
e You want to understand validation, mempool, mining, networking, and
reorgs well enough to implement them.

Smart contract developers who feel “the base layer is a black box”

e You want to understand what happens beneath your contract logic.

https://blockchainzoo.academy page 2 of 12

What the course will give you

For developers

e A clear, reusable blueprint for a blockchain node:
state, transactions, blocks, deterministic hashing
stateless and stateful validation
mempool and fee policy
mining and verification
P2P networking, gossip, syncing
fork handling and safe reorgs
persistence, indexes, snapshots
o HTTP API, wallet flow, explorer indexing
e The ability to port the design to your preferred language stack
e Debugging instincts for distributed truth (why two honest nodes disagree, and how
they converge)

o O O O O O O

For managers, leads, and architects

A correct mental model of what a blockchain does and what it cannot do
A practical vocabulary that maps to real components (mempool, tip, reorg,
cumulative work, sync)
e The ability to review proposals and spot missing pieces:
o “Where is replay protection?”
o “How do you handle reorgs and persistence?”
o “How does a new node sync safely?”
e Better decision-making around consensus choices and tradeoffs

For integrators and platform teams

The end-to-end flow from wallet to node to mempool to block to explorer
Clear expectations for node APIls and data contracts

A realistic view of latency, finality, and error cases (and how to handle them in
products)

For security-focused roles

e A structured attack map with concrete defenses:

replay and nonce rules

double-spend race mechanics

eclipse isolation and peer selection

DoS patterns and rate limits

fork games and 51 percent realities

e The habit of designing for adversarial inputs, not good-faith inputs

O O O O

o

For teachers and communicators

e A lesson roadmap that builds understanding without hand-waving
e Repeatable exercises, test questions, and demos that show “why this rule exists”
e A narrative that makes blockchain teachable without hype

https://blockchainzoo.academy page 3 0of 12

Blockchains look mysterious from the outside because you usually only see the final product:
a network that agrees on a shared history without trusting any single operator. The fastest
way to understand what is really happening is to build the pieces yourself, in the right order.
In this course you will go from “what data exists” to “how it changes safely” to “how it
spreads and converges across many computers”, until you can explain and implement the
full lifecycle of a real blockchain node.

Building a blockchain from scratch is not hard because of one “magic algorithm”. It is hard
because the system is made of layers that only make sense when they are built on top of
each other. If you start with consensus too early, you argue about how to choose a winner
before you define the game. If you start with networking too early, you end up debugging
sockets before you even have a correct transaction format to send.

This course fixes that by following a deliberate build order:

e Data structures (what exists): define blocks, transactions, hashes, and identifiers
so every node can describe the same reality in the same bytes.

e State transitions (how it changes safely): define the rules that decide what is valid,
how balances change, and how replay and double-spend attempts get rejected.

e Distribution (how it spreads and converges): only after one node is correct, you
make many nodes talk, sync, disagree briefly, then converge again using
deterministic rules.

You can take the course in two modes, and switching is always allowed:

e Concept track: no coding required; you focus on the architecture, rules, and “why”
behind each component.

e Builder track: you implement a working node using the Python reference code (and
you can port it to any language you prefer). Your node is designed to interoperate
with other students’ nodes, so the class can form a shared network together.

Each lesson is a 2-hour class with:

e Intro: what the lesson is about and why it matters

e Outcomes: what you should be able to do by the end

e Python Code: code to download to implement what learned

e Explanation: the full logic and mental models (with misconceptions and
decentralization rules)

e Practical: what you build or simulate, with conceptual pseudocode (and separate
downloadable Python code when needed)

e Questions: quick checks to confirm understanding

e Next lesson hook: what you will unlock next

https://blockchainzoo.academy page 4 of 12

Lesson 01: Course orientation and the build order

e OB OR IO You set the rules of the game before you touch
shont Bl rter details: what you are building, the order you will

>~ and confusion. You also choose vyour track
(concept or builder) and set up a clean workspace
so every future lesson builds smoothly on the last.

Lesson 02: Trustless verification, proof vs hearsay

You learn the core mindset of decentralized e —
systems: assume anyone can lie, and verify '-
everything yourself. This lesson makes
signatures and hashes feel real by separating
“someone told me” from “I can prove it with
math”, which becomes the foundation for every
validation rule later.

Lesson 03: Order, time, consensus, and the heaviest chain

Signatures prove who authorized a message, but
they do not solve “which happened first”. You learn
why ordering is the real enemy (double spends),
what consensus actually means (agreeing on
history order), and why “heaviest chain wins” is the
healing rule that lets networks converge after
temporary splits.

Lesson 04: Project structure and implementation roadmap

You design your codebase like a system, not like
a script. This lesson prevents dependency chaos
by separating core data, state rules, consensus
engine, networking, and API, and it gives you a
build order that avoids circular imports and lets
you test progress early.

https://blockchainzoo.academy page 5of 12

Lesson 05: State and Accounts (the database)

[Uessonl05:S tatel&ccounts](The Database))

ACCOUNTS DATABASE
Adcs | Nonca

You build the ledger that your node protects:
balances and nonces per account. This lesson
teaches the “state” as a deterministic database that
must produce the same results on every honest
node, and why nonce tracking is not optional if you
want replay protection.

Lesson 06: Transactions (the atom)

You define the smallest unit of change: a
transaction as an intent to update state. You learn
what every field is for (from, to, amount, fee,
nonce, timestamp, data, signature) and how a
deterministic transaction id (txid) is computed so
nodes can deduplicate and reference

Lessonl06:Transactions (ThelAtom)]

transactions reliably.

Lesson 07: Blocks and BlockHeaders
(the container and the chain)

[e550n07 | Blocks R BlodkHeaders (The Contoiner &5T he'Chain]

You package transactions into blocks and learn
why headers exist: fast verification and chain
linking without downloading everything first. You
also lock in the key rule that the block hash is the
header hash, and the body is represented by a
summary field (TxRoot).

Lesson 08: Blocks and deterministic hashing

You learn the hidden rule that keeps
decentralized systems from drifting: deterministic
serialization. Two honest nodes can still disagree
if they hash different bytes, so this lesson forces
you to define canonical encoding and proves why
“same values” must mean “same bytes”.

https://blockchainzoo.academy

page 6 of 12

Lesson 09: Merkle trees and compact proofs
(TxRoot upgrade + inclusion proofs)

oy MK ST oo e Compart proas You upgrade TxRoot from a simple

TxRoot Upgrade + Inclusion Proofs)

hash-of-concatenation into a Merkle root so you
can prove membership without downloading all
transactions. This is where you learn compact
proofs: how to verify “this tx is in this block” using
only a small path of hashes, which is crucial for
scalability and light clients.

Lesson 10: Transaction validation |
(stateless checks and signatures)

(Stateless Checks & Signatures)

You implement the first half of the node’s brain: USS510" TamattiomVaiidgton]

checks that require no database reads. You learn
how to reject garbage cheaply, verify signatures
correctly, and why every meaningful field must be
covered by the signed message to prevent
tampering.

Lesson 11: Transaction validation Il
(stateful checks and applying transactions)

R (R A You add context: nonce rules, balance rules, and

(Stateful Chacks & Applying Tramsactions)

the actual state transition that updates accounts.
This lesson turns transactions into real money
movement and shows how replay attempts and
double spends fail when the node enforces stateful
validation consistently.

Current price Schedule

€300.00

€10.00 per lessaon

Window Per lesson Total (30 lessons)

Christmas Early Bird

il €108.080 €300.00
Ends Dec 31 (local timel 2025-12-01 to 2025-12-31

: Registrations close when 18@ people
: subscribe or March 2026

January

2026-01-01 to 2026-01-31

$15.00 5450.00

: arrives, whichever comes first.
.

February
2026-02-01 to 2026-02-28

$30.00 5900.00

https://blockchainzoo.academy page 7 of 12

Lesson 12: The chain manager, genesis block, and link validation

You build the component that enforces
“blockchain” as more than a list: a structure with
rules. You define the genesis anchor, then
implement the first chain rule: blocks must link to
the current tip correctly, which prevents random
insertion and broken histories.

Lesson 13: The Mempool (the waiting room)

T e P (T W oS) You build the staging area between validation and

blocks arrive.

Lesson 14: Transaction fees + mempool policy

You define what your node will and will not relay,
store, and mine. This lesson introduces fee
markets (fee rate), anti-spam rules (size limits,
minimum fees), and replacement rules (how
higher-fee transactions can replace earlier ones
safely), which is where economics meets network
survival.

Lesson 15: Proof of Work mining
(from mempool to sealed blocks)

mining. This lesson explains why mempools are
local and imperfect, why deduplication matters,
how miners select transactions under constraints,
and why you must clean the mempool when new

esson) - jTransaction Fees & Mempool

Your project becomes a real blockchain: a system

cleanup.

that makes writing history expensive and verifying it
cheap. You build candidate blocks, coinbase
rewards, the PoW loop, and block verification, then
connect mining to state updates and mempool

https://blockchainzoo.academy

page 8 of 12

Lesson 16: Difficulty adjustment, timestamps, and time rules

You learn why “time” is a soft input that attackers
try to bend. This lesson defines what timestamps
how nodes reject
unreasonable time claims, and how difficulty
adjusts so block production stays stable even as
hardware and conditions change.

are allowed to do,

Lesson 17: Alternatives to Proof of Work (PoS and PoP)

You explore the design space: what changes when
‘cost” is no longer electricity. You learn the
high-level mechanics of PoS and
participation-based models, what extra data
structures they require, and why syncing and
legitimacy proofs become more complex when
consensus depends on stake or reputation.

Lesson 18: P2P networking foundations

You turn your node from a local program into a
distributed system. This lesson introduces peers,
transport choices, why gossip beats full mesh,
and why every connection must start with a
handshake that proves you are speaking the
same protocol on the same network.

Lesson 19: Network Messages (the Protocol Dictionary)

You define a shared language: message types and
payloads. This lesson teaches message envelopes
and the critical networking reality that TCP is a byte
stream, so you need framing rules to avoid random
parse failures and subtle bugs.

https://blockchainzoo.academy

page 9 of 12

Lesson 20: Minimal P2P networking (nodes that talk)

You make nodes actually communicate: connect,
request the Ilatest block, and respond
deterministically. This lesson is the smallest
working network loop that proves your protocol
and concurrency model are correct before you
add heavy features like syncing and fork
handling.

Lesson 21: Peer discovery, handshake, and network hardening
(rate limits, bans, DoS basics)

You move from “it works” to “it survives”. This
lesson introduces peer discovery strategies,
stronger handshake checks, rate limits, ban logic,
and basic defenses against spam and
denial-of-service behaviors that would otherwise
crash your node.

Lesson 22: Gossip protocol for blocks and transactions

You implement the engine of propagation:
validated data spreads neighbor-to-neighbor. This
lesson adds broadcast rules, seen-caches to
prevent infinite rebroadcast storms, and the core
intake logic: verify, store, forward, and never trust
the messenger.

Lesson 23: Nakamoto Consensus and the heaviest chain rule

You implement the rule that makes decentralized
networks converge: follow the valid chain with the
most accumulated proof. This lesson teaches why
‘longest” is a simplification, why cumulative work
matters, and what metadata you must track to
compare competing histories efficiently.

https://blockchainzoo.academy page 10 of 12

Lesson 24: Forks and chain reorganization (reorg) safely

You implement the dangerous part: switching
histories without corrupting state. This lesson
teaches how to find the common ancestor, roll
back losing blocks, re-apply winning blocks,
salvage transactions back to the mempool, and
why a buggy reorg can silently destroy balances
and nonces.

Lesson 25: Persistent storage + indexes + state snapshots

You make your node restart-safe and
reorg-capable at scale. This lesson introduces what
to persist (blocks, headers, metadata, state), how
indexes make lookups fast, and why snapshots let
you avoid replaying from genesis every time while
still preserving verifiability.

Lesson 26: Initial sync (new node joining) and catching up safely

You solve the new node problem: how to join a
network that is far ahead without trusting anyone.
This lesson defines batch syncing, ordered
verification, safe limits, and the separation
between historical sync (ordered) and live gossip
(unordered).

Lesson 27: Security review and attack simulations

You stress-test your mental model by simulating
real attacks: replay, double-spend races, eclipse
isolation, 51 percent power, and denial-of-service
patterns. The goal is not paranoia, it is clarity: you
learn exactly which rule blocks which attack, and
where your design is still weak.

https://blockchainzoo.academy page 11 of 12

Lesson 28: Node HTTP API (REST) and wallet interaction

You add the user-facing door to your node. This
lesson builds a small REST API so wallets can
query balances, submit signed transactions, and
fetch blocks, while keeping all validation rules
inside the node so the APl never becomes a
security bypass.

Lesson 29: Wallets and key management

You build the user’s key system: keys, addresses,
mnemonics, and offline signing. This lesson
teaches the real security boundary: private keys
never touch the node, wallets create proof, nodes
verify proof, and losing your seed phrase means
losing control permanently.

You build a read-only viewer that makes your
blockchain human-browsable. This lesson adds
indexing and query logic so you can navigate
blocks, transactions, and addresses, and it
teaches the key decentralization reminder: an
explorer is a window into a node, not a source of
truth by itself.

Why this moment matters

When the spotlight was on blockchain, it attracted hype, noise, and scams.
Now the spotlight is on Al, and that is exactly why this is the moment for
serious blockchain and decentralization work to happen quietly and correctly.
Forget cryptocurrencies. Blockchain is about coordination, verification,
resilience, and trustless infrastructure, things every industry needs, including
Al itself. Models, data, provenance, incentives, and governance all break
without decentralization. This is your window to stop chasing trends and start
architecting the systems that will actually matter for the next decade.

https://blockchainzoo.academy page 12 of 12

